

Cheoljae Lee

Email: kum3223@dgist.ac.kr

Phone number: +82-10-4173-2945

Google Scholar: <https://tinyurl.com/4485fu6t>

Lab homepage: <https://juhyucklee1107.wixsite.com/website>

Education

M.S/Ph.D. Integrated	Energy Science and Engineering (Prof. Ju-Hyuck Lee)	2024.02~2026.02 2019.09~2022.06	DGIST (Republic of Korea)
Bachelor	School of Undergraduate Studies	2015.03~2019.08	DGIST (Republic of Korea)

Skills

Equipment	Fabrication (Thermal evaporator, 3D printer) Characterization (SEM, XRD, AFM, OM) Measurement (Oscilloscope, Electrometer, Sourcemeter, LCR meter, Function generator & Amplifier, Universal testing machine)
Software	COMSOL Multiphysics (Simulation), Rhinoceros 3D (3D modeling), Keyshot (3D rendering)

EXPERTISE

- Electrocoagulation/Electrophoretic based micro/nanoparticle (Microplastic, ceramic, metal oxide) removal system
- Electric field based particle control system
- Electrostatic device based body electrostatic discharge prevention system
- Micro/nano surface structuring and analysis
- Completed education of COMSOL Multiphysics, ALTSOFT, Dec 2021

SCI Paper publication

	First author	Co-author	Total
Paper (#)	4	11	15
Impact factor	54.98	151.13	221.81

Selected Project Experience

Project Title	Electrophoretic Micro/Nano Particle Removal System
Organization	(2020.03 – 2022.06)
Project detail, Achievements	<ul style="list-style-type: none">• Aimed to develop a technology for removing toxic micro/nano-sized particles (e.g., microplastics, heavy metals, oxides) that cannot be filtered using membrane-based methods.• Designed and fabricated a high-voltage, low-current energy device based on porous and patterned surfaces.• Combined the energy device with Electrophoretic Deposition (EPD) principles to realize a novel particle deposition technique.• Analyzed particle removal using zeta potential measurements, fluorescence microscopy, SEM, and EDS.• Optimized core parameters including voltage, current, and treatment time to maximize removal efficiency.• Published in Nano Energy (2022)

Project Title	Wireless and Battery-Free ESD Protection System
Organization	(2021.03 – 2022.06)
Project detail, Achievements	<ul style="list-style-type: none">• Aimed to develop a human-body ESD prevention system that does not require grounded wiring or conventional ionizers.• Investigated the principle that human body potential rises positively due to friction with clothing or shoes.• Designed a low-current device using triboelectric charge generation to supply negative charges to the human body.• Experimentally derived optimal neutralization conditions by adjusting device output, dielectric material, and humidity.• Created anti-static shoes and secured in research funding (₩64,000,000).• Published in Nano Energy (2022)

Project Title	Contactless Particle Removal via Electrodynamic Screen (EDS) (Mar. 2021 - Jun. 2025)
Organization	DGIST, Samsung Electronics
Project detail, Achievements	<ul style="list-style-type: none"> • Aimed to develop a contactless particle removal system applicable to indoor (home appliance) and outdoor (solar panel) environments. • Designed EDS structures and optimized electrode patterns using electrophoretic and dielectrophoretic principles. • Selected and applied high-dielectric, high-breakdown materials for stable high-voltage operation. • Conducted DRE (dust removal efficiency) experiments by adjusting electrode gap, waveform, frequency, and voltage. • Transitioned from single-phase to three-phase EDS systems, enabling directional control of particles. • Extended the research into a self-powered EDS system driven by wind • Published in Nano Energy (2025)
Project Title	Development of a Microplastic Rapid Electrocoagulation Module (2024.03 - present)
Organization	DGIST, Samsung Electronics
Project detail, Achievements	<ul style="list-style-type: none"> • Aimed to aggregate sub-micrometer microplastics discharged from washing machines into filterable sizes. • Addressed the limitations of conventional electrocoagulation systems that require separate tanks and cannot perform real-time treatment • Designed and fabricated a rapid electrocoagulation module operable during washing machine discharge. • Experimentally optimized electrochemical parameters (voltage, electrode gap, surface area) for high-speed aggregation. • Performed flow simulations based on experimental data to derive the optimal module structure. • Verified coagulation and filtration performance in real washing machine conditions.

Publications

[1] Self-Powered Directional Dust Removal via Wind-Driven Phase-Controlled TENG for Solar Panel Maintenance

Cheoljae Lee†, Junyeong Yang†, Soo-Kwan Kim, Yuggyung Jin, Hyosik Park, Sujeong Gwak, Gerald Selasie Gbadam, Jimin Yeon, Yeonkyeong Ryu, Jongsung Lee, Seongho Son, Jeongnam Cheon, Jongmin Choi, Wanchul Seung*, Ju-Hyuck Lee*

Nano Energy, 111262 (2025) / **Equal First author** / [Impact Factor: 17.56]

[2] Electrostatic discharge prevention system via body potential control based on a triboelectric nanogenerator

Cheoljae Lee, Minsu Heo, Hyosik Park, Hyeonseo Joo, Wanchul Seung*, Ju-Hyuck Lee*

Nano Energy, 103, 107834 (2022) / **First author** / [Impact Factor: 17.56]

[3] Toxic micro/nano particles removal in water via triboelectric nanogenerator

Byung-Geon Park†, **Cheoljae Lee†**, Young-Jun Kim, Jinhyoung Park, Hyeok Kim, Young Jung, Jong Soo Ko, Sang-Woo Kim*, Ju-Hyuck Lee*, Hanchul Cho*

Nano Energy, 100, 107433 (2022) / **Equal First author** / [Impact Factor: 17.56]

[4] Recent Structure Development of Poly(vinylidene fluoride)-Based Piezoelectric Nanogenerator for Self-Powered Sensor

Cheoljae Lee†, Hyosik Park†, Ju-Hyuck Lee*

Actuators. 9, 57 (2020) / **Equal First author** / [Impact Factor: 2.3]

[5] Direct current generation in triboelectric nanogenerators through ionic dynamics and electrode polarization effects

Gerald Selasie Gbadam, Hyosik Park, Cheoljae Lee, Hyeonseo Joo, Sujeong Gwak, Hong-Joon Yoon, Hanjun Ryu, Sang Min Lee, Ju Hun Lee, Ju-Hyuck Lee*

Nature Communications, 16, 9540 (2025) / **co-author** / [Impact Factor: 15.7]

[6] Reconfiguring Hierarchical Porous Architecture of 2D Metal Nanosheets for Multifunctional Triboelectric Nanogenerators

Dae-Hong Kim, Ju-Hyoung Yu, **Cheoljae Lee**, Min-Young Seo, Seungyeon Kim, Hyeonji Joo, Young-Seok Song, Sukang Bae, Ju-Hyuck Lee, Seoung-Ki Lee*, Tae-Wook Kim*

Advanced Materials, e15466 (2025) / **co-author** / [Impact Factor: 26.8]

[7] Polyelectrolytes as a Stable and Tunable Platform for Triboelectric Nanogenerators

Hyeonseo Joo†, Sujin Park†, Sujeong Gwak, Hyosik Park, Soyoung Kim, **Cheoljae Lee**, Wonho Lee* and Ju-Hyuck Lee*

Advanced Materials, 2505547 (2025) / **co-author** / [Impact Factor: 26.8]

[8] Ion diffusivity and alkyl chain length-dependent triboelectric behavior of PVDF-HFP+ IL composites

Sujeong Gwak, Hyeonseo Joo, Bonhyeop Koo, **Cheoljae Lee**, Hyosik Park, Hochun Lee, Ju-Hyuck Lee

Nano Trends, 10, 100104 (2025) / **co-author** /

[9] Interfacial Triboelectricity Lights Up Phosphor-Polymer Elastic Composites: Unraveling the Mechanism of Mechanoluminescence in Zinc Sulfide Microparticle-Embedded Polydimethylsiloxane Films

Gyudong Lee, Seongkyu Song, Woo Hyeon Jeong, **Cheoljae Lee**, June-Seo Kim, Ju-Hyuck Lee, Jongmin Choi, Hyosung Choi, Younghoon Kim, Sung Jun Lim, Soon Moon Jeong

Small, 2307089 (2024) / **co-author** / [Impact Factor: 13.59]

[10] Self-powered electrodynamic dust removal for sustainable solar panels using triboelectric nanogenerators

Minsu Heo, Junyeong Yang, Bosung Kim, **Cheoljae Lee**, Hyosik Park, Soo-Kwan Kim, Jongsung Lee, Seongho Son, Jeongnam Cheon, Jongmin Choi, Wanchul Seung*, Sang-Woo Kim*, Ju-Hyuck Lee*

Nano Energy, 121, 109257 (2024) / **co-author** / [Impact Factor: 17.56]

[11] Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators

Hyosik Park, Seung-Ju Oh, Mingyu Kim, **Cheoljae Lee**, Hyeonseo Joo, Jin Woo Bae*, Ju-Hyuck Lee*

Nano Energy, 114, 108615 (2023) / **co-author** / [Impact Factor: 17.56]

[12] Functionalized thermoplastic polyurethane with tunable tribopolarity and biodegradability for high performance and biodegradable triboelectric nanogenerator

Hyeonseo Joo, Sujeong Gwak, Mun Hwan Lee, Hyosik Park, **Cheoljae Lee**, Ju Hun Lee, Sang A Han*, Ju-Hyuck Lee*

Sustainable Materials and Technologies, 36, e00638 (2023) / **co-author** / [Impact Factor: 10.16]

[13] High Performance and Direct Current Piezoelectric Nanogenerators Using Lithium-doped Zinc Oxide Nanosheets

Jeongeun Kim†, Yuseok Kim†, Yerin Kim, **Cheoljae Lee**, Ju-Hyuck Lee*

Energy Technology, 2201453 (2023) / **co-author** / [Impact Factor: 3.88]

[14] Self-assembly of unidirectionally polarized piezoelectric peptide nanotubes using environmentally friendly solvents

Hyojin Park†, Yuseok Kim†, Yerin Kim, **Cheoljae Lee**, Hyosik Park, Hyeonseo Joo, Ju Hun Lee*, Ju-Hyuck Lee*

Applied Surface Science, 618, 156588 (2023) / **co-author** / [Impact Factor: 7.21]

[15] Control of the Biodegradability of Piezoelectric Peptide Nanotubes Integrated with Hydrophobic Porphyrin

Yerin Kim, Hyojin Park, Yuseok Kim, **Cheoljae Lee**, Hyosik Park, Ju-Hyuck Lee*

ACS Applied Materials & Interfaces, 14, 38778-38785 (2022) / **co-author** / [Impact Factor: 8.26]

[16] Plasticized PVC-Gel Single Layer-Based Stretchable Triboelectric Nanogenerator for Harvesting Mechanical Energy and Tactile Sensing

Hyosik Park†, Seung-Ju Oh†, Daeyeong Kim, Mingyu Kim, **Cheoljae Lee**, Hyeonseo Joo, Insun Woo, Jin Woo Bae, Ju-Hyuck Lee*

Advanced Science, 9, 2201070 (2022) / **co-author** / [Impact Factor: 14.1]

[17] Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet

Yoonjung Lee†, Sohee Kim†, Daeyeong Kim, **Cheoljae Lee**, Hyojin Park, Ju-Hyuck Lee*

Applied Surface Science, 509, 145328 (2020) / [Impact Factor: 7.21]

Patents

[1] APPARATUS AND METHOD OF PREVENTING OCCURRENCE OF STATIC ELECTRICITY USING ENERGY HARVESTER
Registration No. 10-2520769-0000 (Korea)

[2] UNIDIRECTIONAL DUST REMOVAL DEVICE USING AN ENERGY HARVESTING ELEMENT AND CONTROL METHOD THEREOF
Application No. 10-2025-0071337 (Korea)

Experience

Robot Locomotion Technology Researcher, Korea Army, Republic of Korea 2022. 06 -2023. 12

Animal Behavior and Circadian Rhythm Lab Intern, DGIST, Republic of Korea 2017

Advisor : Prof. Han Kyoung Choe

Honors/Awards

Best Poster Award, The 3rd Global Conference of Innovation Materials 2025

Best Student Award, Energy Science and Engineering, DGIST 2022

Reference

Prof. Ju-Hyuck Lee, Ph.D. (Ph.D. thesis supervisor)

Department of Energy Science and Engineering, DGIST, 333, Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, Republic of Korea

Tel: +82-10-2216-2932

E-mail: jhlee85@dgist.ac.kr

Website: <https://juhyucklee1107.wixsite.com/website>

Last update: 2025-12-14