

Resume

Name:	Kangjie Li (李康杰)	Birthdate:	1996.03.06
E-mail:	kliba@connect.ust.hk	Mobile:	+86 19975278648
Major:	Mechanical engineering		
Address:	HKUST, Clear Water Bay, Kowloon, Hong Kong		

■ Research Expertise

1. Topology optimization
2. Deep learning methods and applications
3. Computational mechanics

■ Education Background

1. 2014.09-2018.06: Bachelor of Mechanical Engineering, China University of Mining and Technology.
2. 2018.09-2021.03: Master of Mechanical Design and Theory, Zhejiang University.
(Supervisor: Prof. Yixiong Feng)
3. 2021.09-2025.08: Doctor of Mechanical Engineering, The Hong Kong University of Science and Technology.
(Supervisor: Prof. Wenjing Ye)

■ Selected Awards

1. 2015-2016 National Scholarship
2. 2018-2019 National Scholarship
3. 2019-2020 National Scholarship
4. Outstanding Graduates of Zhejiang Province
5. HKUST RedBird Academic Excellence Award for Continuing PhD Students in 2024-25

■ Selected Publications

1. Li, K., Ye, W. (2025). D-FNO: A decomposed Fourier neural operator for large-scale parametric partial differential equations. *Computer Methods in Applied Mechanics and Engineering*.
2. Li, K. (2024). A decoupled probabilistic constrained topology optimization method based on the constraint shift. *International Journal for Numerical Methods in Engineering*.
3. Li, K., Ye, W., et al. (2023). A 3D structure mapping-based efficient topology optimization framework. *Journal of Mechanical Design*.
4. Li, K., Gao, Y. et al. (2021). A data-driven methodology to improve tolerance allocation using product usage data. *Journal of Mechanical Design*.
5. Li, K., Ye, W. (2024). Improving efficiency in structural optimization using RBFNN and MMA-Adam hybrid method. *Advanced Engineering Informatics*.

■ Works in Progress

1. Li, K., Ye, W. An efficient online learning approach for topology optimization integrating Fourier neural operator and multi-grid input.
2. Li, K., Ye, W. An online learning framework for isogeometric topology optimization using Fourier neural operators.